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Abstract

Increasingly, innovative functionality in embedded sys-
tems is realized by connecting previously autonomous
embedded systems. This requires real-time communi-
cation and coordination between these connected sys-
tems. Modelica and the StateGraph2 library provide
a good environment for modeling embedded systems
including controllers and physics. However, it lacks
appropriate support for modeling the communication
and coordination part.

In this paper, we present an extension to the State-
Graph2 library that enables modeling asynchronous
and synchronous communication and rich real-time
constraints. We illustrate our extension of the State-
Graph2 library by modeling and simulating two minia-
ture robots driving in a platoon.

Keywords: StateGraph2, Modelica Library, Coordi-
nation, Asynchronous Communication, Real-Time

1 Introduction

Embedded software is an important part of today’s life.
For example, there were about 30 embedded micropro-
cessors per person in developed countries in 2008 and
current cars include up to 70 electronic control units
with about 1GB of software [4].

One reason for the increasing trend of embedded
systems is the introduction of coordination between
previously autonomous systems. As a result complex
systems of systems arise to realize functionality which
cannot be achieved by each system alone [12]. Again,
the car industry is an example where vehicles com-
municate with other vehicles in order to extend the
car’s vision to areas obstructed by other vehicles [15].
This coordination requires an intensive communication
between the systems under real-time constraints.

The embedded software is subject to very high qual-

ity requirements as often embedded systems are safety-
critical systems where faults can result in severe conse-
quences, e.g., injuries or loss of peoples’ lives. Thus,
faults of the system have to be avoided as much as pos-
sible. Currently, the rate of defects from mechanical
parts decreases while the defect rate in electrical parts
including software increases [4].

Therefore, appropriate validation and verification ac-
tivities, e.g., simulation, have to be employed to detect
and remove all faults. Model-driven development ap-
proaches allow to perform these activities already on
the model level in early phases of development. Thus,
on the one hand, a verification approach can exploit the
abstraction provided by the model to improve the scal-
ability and, on the other hand, verification can already
be performed early in the process where no implemen-
tation yet exists.

Modelica is an object-oriented, declarative, multi-
domain modeling language for describing and simu-
lating models which represent physical behavior, the
exchange of energy, signals, or other continuous-time
interactions between system components as well as
reactive, discrete-time behavior. Modelica uses the
hybrid differential algebraic equation formalism as a
sound mathematical representation. Furthermore, ma-
ture compilation and simulation environments for Mod-
elica exist.

However, Modelica in version 3.2 and particularly
the StateGraph2 library lack appropriate support for the
sketched case of modeling the real-time coordination
between autonomous systems as this coordination is
often realized by communication using asynchronous
messages and complex state-based behavior [12].

In this paper, we present a Modelica library for mod-
eling communication under hard real-time constraints.
Our library extends the StateGraph2 library by provid-
ing support for (1) synchronous and asynchronous com-
munication and (2) rich modeling of real-time behavior.



These extensions are based on our previous work on
the MECHATRONICUML modeling language [2] and
ModelicaML [11].

In the next section, we present our running example.
We discuss the limits of the StateGraph2 library with
respect to this scenario in Section 3. Our extension to
the StateGraph2 library is described in Section 4. We
formally define our extension in Section 5. In Section 6,
we present the Modelica model of our scenario using
our library extensions. After a discussion of related
work in Section 7, we conclude and give an outlook on
future work in Section 8.

2 Running Example

This section presents our test platform for evaluating
real-time coordination scenarios. We present a concrete
real-time coordination scenario of a platoon drive as
the running example for the paper.

2.1 Intelligent Miniature Robot BeBot

The test platform is a wheeled mobile robot known as
BeBot [7]. It is a miniature mobile robot developed at
Heinz Nixdorf Institute and has been used in various
research projects, e.g., [8]. The BeBot is powered by
two DC-motors with integrated encoder.

To use this mobile robot in a simulation environment,
a model of the BeBot is developed in Dymola. Basi-
cally, the hardware model of the mobile robot can be
categorized into three main groups. The first group con-
sists of its casing and electrical circuit boards. All these
components are modeled as a rigid body in Dymola. In
addition, the shape model from the MultiBody library
is used to visualize these components in the animation.
The second group comprises the wheels of the robot.
Under the assumption of pure rolling, these wheels are
represented by a pair of wheels with a common axle
whereby each wheel is individually controlled. The
third group is made of two DC-motors. Each of these

Figure 1: Intelligent Miniature Robot BeBot
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Figure 2: Model of BeBot Mobile Robot in Dymola

motors is represented using a model of a DC-motor.
In this model, friction is taken into consideration to
provide realistic behavior for the motor. As shown in
Figure 2, these components are connected accordingly
to create a simple model of the BeBot.

To control the movement of the mobile robot, the ve-
locities of the wheels have to be controlled. Therefore,
a speed controller is designed to control the rotation
velocity of each wheel. The controller is a PI-controller
with anti-wind-up function and it ensures that each
wheel rotates at a desired velocity.

2.2 BeBot Platoon Scenario

The scenario consists of two BeBots (see Figure 3).
They communicate wirelessly with each other and have
a distance sensor at their front. Both have the same
software specifications. The BeBots drive on a straight
way in the same direction. The front-driving BeBot
transports a heavy good to the furthermost place of
delivery. The rear-driving BeBot transports several
small goods and has to deliver them to several stations.
As the front-driving BeBot is heavier than the rear-
driving BeBot, its cruising speed is slower than the
cruising speed of the rear-driving BeBot. To optimize
the energy consumption, BeBots may form a platoon,
i.e., the rear-driving BeBot drives in the slipstream of
the front-driving BeBot.

During platooning, a collision could occur if the
front-driving BeBot must brake very hard (e.g., due
to an obstacle on the street) and the rear-driving Be-

Figure 3: Platoon Scenario with Two BeBots



Bot does not know beforehand that it must brake. To
avoid a collision, the front-driving BeBot commands
the rear-driving BeBot by sending an asynchronous
brake-message to perform a brake maneuver. The
brake-message is transmitted to the rear-driving BeBot
that is going to brake as soon as it gets this message.
This delivery time is safety-critical, because the front-
driving BeBot brakes after that time and braking must
not result in a collision. A precondition to coordinate
such braking behavior is that a BeBot must know if an-
other BeBot is driving behind. Therefore, besides the
braking message also messages for starting and ending
a platoon are required.

The behavior specification of this scenario can be
modeled with statecharts, e.g., to distinguish if a BeBot
drives in a platoon or not. By using Dymola, the State-
Graph2 library is the first choice. However, the next
section shows the limits of StateGraph2 for modeling
the behavior of this real-time coordination scenario.

3 Limits of StateGraph2

StateGraph2 [9] is a Modelica library for state-based
modeling. It provides the three main classes Step, Tran-
sition, and Parallel for modeling statecharts. The class
Step models discrete system states, the class Transition
models state changes, and the class Parallel models
hierarchical and parallel states.

Statecharts are used to describe the behavior of reac-
tive systems. The reactions of such systems are based
on their current internal state and the external input.
Formalisms for Mealy machines, Harel’s statecharts [5],
and most common automata-based formalisms support
events that can be used for a message-based commu-
nication. However, StateGraph2 does not have syn-
tactical constructs. Different steps or transitions can
only communicate via shared variables. In real systems,
this is not possible when the systems are distributed
and have no access to shared memory. The need of
shared memory makes it difficult to reuse components
as they depend on their environment and not only on
their interface description. Therefore, a message-based
mechanism is very important. This may be either an
asynchronous or a synchronous communication.

StateGraph2 has only a limited support to specify
timing behavior. Only the execution of transitions can
be delayed. The variable waitTime of a Transition spec-
ifies the time a transition waits before it fires when its
guard evaluates to true. If during the waiting period
the guard evaluates back to false, the transition does
not fire. Therefore, the construct delayedTransition of

StateGraph2 can be misinterpreted, because the seman-
tics includes more than a simple delay. In contrast to
StateGraph2, Timed automata [1] use clocks to store
time independently of a concrete state. Clocks can be
read and reset in any state and upon firing of a transition.
Therefore, this concept is more flexible for specifying
timing behavior. To conclude, the variable waitTime
alone is too limited to describe real-time behavior.

A modeling language for the software of mecha-
tronic systems that supports hierarchical statecharts as
well as synchronous and asynchronous communication,
and clocks is MECHATRONICUML [2]. The formal
behavior definition of this language is based on timed
automata [1]. Therefore, our extensions of the State-
Graph2 library are based on concepts of MECHATRON-
ICUML. The next section explains these extensions.

4 Real-Time Coordination Library

As stated above, adequate modeling constructs for syn-
chronous as well as asynchronous communication and
for real-time behavior are essential for modern em-
bedded systems. Here, we consider synchronous and
asynchronous communication to be a message-based
communication where the former means that the sender
always waits as long as the receiver is not able to con-
sume the message. The latter means that the sender
does not wait on a reaction of the receiver and proceeds
with its execution that, in particular, might include
sending further messages. For asynchronous commu-
nication, this implies that the receiver has to have a
message buffer which is sufficiently large to prevent
loss of messages.

This section introduces our extended version of the
StateGraph2 library, called real-time coordination li-
brary. In particular, Section 4.1 introduces synchro-
nization ports and synchronization connectors for syn-
chronous communication. Section 4.2 shows Messages
and Mailboxes for asynchronous communication. Fi-
nally, Section 4.3 describes Clocks, Invariants and
Clock Constraints for the modeling of real-time be-
havior according to time automata [1].

4.1 Synchronization Connectors and Ports

For the modeling of synchronous communication, we
extended transitions by synchronization ports (sync
ports). Sync ports sub-divide into sender sync ports
and receiver sync ports. A sender sync port of one tran-
sition is connected to a receiver sync port of another
transition by a synchronization connector. We repre-



sent a sender sync port as a non-filled orange circle, a
receiver sync port as a filled orange circle and a syn-
chronization connector as an orange line. In Figure 4,
a synchronization connector connects the sender sync
port of transition t1 with the receiver sync port t2.

t1 t2
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Figure 4: Synchronization Ports and Connectors

A transition that is connected via its sender or re-
ceiver sync ports to the receiver or sender sync ports
of other transitions is allowed to fire if it is able to
fire together with at least one of the connected transi-
tions. For the example in Figure 4, this means that t1 is
allowed to fire if t2 is able to fire and vice versa.

We now give a detailed explanation of how the fir-
ing of transitions with synchronization is implemented.
The implementation is presented with help of the de-
pendency graph in Figure 5.

First, the necessary conditions for firing each of the
transitions (without synchronization) have to be sat-
isfied, i.e., the preceding generalized step has to be
active, the condition of the transition must hold and the
optional condition port of the transition must be set. If
all of these conditions hold, the property preFire of each
of the transitions will evaluate to true.

Furthermore, if an after time is specified for the tran-
sition it must have expired. The after time construct is
new and replaces the delay (wait) time from the origi-
nal version of the StateGraph2 library. It differs from
the delay time in that at least the after time must have
expired to let the transition fire. In contrast, the seman-
tics of the delay time is that the delay time must have
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Figure 5: Dependency Graph of Conditions for Firing
of Transitions with Synchronization

expired after the transition is fireable in order to let the
transition fire. We introduced the after time semantics
because it might happen that for two transitions that
need to synchronize the time instants in which they are
allowed to fire might not match due to their delay time.

If preFire of the sending transition, i.e., the transition
whose receiver sync port is connected to the synchro-
nization connector, is true, the signal fire_ready_r of
the receiver sync port is set to true. If for the sending
transition, i.e., the transition whose sending sync port is
connected to the synchronization connector, holds that
preFire is true and it receives the signal fire_ready_r over
its sender sync port then the signal fire_ready_s of its
sender sync port is set to true. If the signal fire_ready_s
is true in the receiving transition the signal fire_r of
the receiver sync port is set to true. Finally, if fire_r
is recognized to be true in the sending transition the
signal fire_s of its sender sync port is set to true and
both transitions are ready to fire.

4.2 Messages and Mailboxes

For the modeling of asynchronous communication, we
introduce two new components named Message and
Mailbox. Each instance of the Message component has
two purposes. On the one hand, it defines a certain mes-
sage type by specifying an array of formal parameters
which might be of type Integer, Boolean or Real. As
an example one message type might be defined by the
array (Integer[2],Boolean[1],Real[1]). The parameter
array of a message type is also called its signature. On
the other hand, an instance of the Message component
is responsible for sending a message whenever a con-
nected transition fires. A transition is able to signal to a
Message component instance to send a message if the
firePort of the transition is connected to the condition-
Port of the Message component instance.

As a visualization example consider the message
type confirm in Figure 6. The purple connector connects
the firePort of the transition t1, displayed as a non-filled
purple triangle, to the conditionPort of confirm where
the conditionPort of confirm is represented by a purple
triangle. Additionally, confirm has exactly one Integer
parameter that is determined by the yellow connector
that originates at the port cruisingSpeed and connects to
the Integer valued input port of confirm represented by
a yellow filled circle.

For each message type exists exactly one instance
of the Mailbox component with the same signature.
The message type sends its messages to the Mailbox
instance. To specify which message type belongs to
which Mailbox instance the message_output_port of the



message type is connected to the mailbox_input_port of
the Mailbox instance.

A Mailbox instance defines a finite FIFO queue
where the size of the queue is settable at design time. In
order to let a transition receive a certain message from
such a queue its transition_input_port is connected to
the mailbox_output_port of the Mailbox instance. Then,
the transition is allowed to fire if the Mailbox instance
signals that at least one message is present. As an exam-
ple for the visual representation consider the Mailbox
instance confirmBox in Figure 6 that is connected to the
transition t2 by a connector.

If two extended StateGraph2 models are included in
different component instances they might still commu-
nicate asynchronously across the boundaries of these
component instances with the help of delegation ports.
Therefore, one component defines an output delega-
tion port and the other defines an input delegation port.
Both delegation ports are connected. Then, the com-
ponent instance containing the message type connects
the message type to the output delegation ports and the
component instance containing the Mailbox instance
connects the Mailbox instance to the input delegation
port. As an example consider Figure 6 which shows
two extended State Graph models in two separate com-
ponent instances communicating over delegation ports
that are displayed as envelopes with gray triangle.

Synchronous and asynchronous communication can
be combined at one transition. Besides the synchroniza-
tion conditions the Mailbox instance additionally has
to signal to the transition that at least one message is
available.

4.3 Clocks, Invariants and Clock Constraints

For the modeling of real-time behavior according to
timed automata, we extended the StateGraph2 library

    front:BeBot_SW
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Figure 6: Message Types and Mailbox Instances

by three components named Clock, Invariant and Clock-
Constraint. Clocks are real-valued variables whose
values increase continuously and synchronously with
time. Clocks might be reset to zero upon activation of a
generalized step or firing of a transition. An invariant is
an inequation that specifies an upper bound on a clock,
e.g., c < 2 or c <= 2 where c is a clock. Invariants are
assigned to generalized steps and are used to specify
a time span in which this generalized step is allowed
to be active. A clock constraint might be any kind of
inequation specifying a bound on a certain clock, e.g.,
c > 2, c >= 5, c < 2, c <= 5 where c is a clock. Clock
constraints are assigned to transitions in order to restrict
the time span in which a transition is allowed to fire.

As an example consider Figure 7. The example con-
sists of a clock c, an invariant clockValue <= bound and
a clock constraint clockValue >= bound where bound is
a positive integral number given as a parameter. Clocks
are displayed as a rectangle containing a clock icon,
invariants are displayed as rectangles containing the
corresponding inequation and a transition icon. Clock
constraints are displayed as rectangle containing the
corresponding inequation and a step icon. The clock
which is used by an invariant or a clock constraint is
connected via its y port with the clockValue port of the
invariants and clock constraints.

When the generalized step PlatoonProposed is acti-
vated, the clock c is reset to zero, which is accomplished
by connecting the activePort (non-filled purple triangle)
of PlatoonProposed to the u port (non-filled purple cir-
cle) of the clock. The invariant is assigned to the step
PlatoonProposed by the connector originating at the ac-
tivePort of PlatoonProposal leading to the conditionPort
(filled purple circle) of the invariant. It means that Pla-
toonProposed is allowed to be active if c has a value
less or equal to bound. The transition t1 is assigned
the clock constraint by connecting the firePort of the
clock constraint with the conditionPort of t1. The clock

t1

Platoon

Proposed

clockValue <= 

bound

NoPlatoon

clockValue <= 

bound

Invariant

c

y

Figure 7: Clocks, Invariants and Clock Constraints



constraint means that t1 is allowed to fire if c has a
value greater or equal to time bound.

5 Formal Definition of the Library

This section covers the formal definition of an extended
StateGraph2 model. The Real-Time Coordination li-
brary extends the structure of the model given in [9]
by synchronization connectors, mailboxes, clocks, in-
variants and clock constraints whereas the former two
are required for synchronous and asynchronous com-
munication resp. and the latter three are used for the
specification of real-time behavior analogously to time
automata [1]. Due to the possibility of synchroniza-
tion of two transitions, we altered the delay time of a
transition to an after time, which has slightly different
semantics.

For the definition of the semantics we give an inter-
pretation algorithm that is analogous to the one given
in [9]. Additionally, consider the added elements, i.e.,
when a generalized step is active the corresponding in-
variant must not be violated. Further, when a transition
fires its clock constraint must be satisfied, it must be
able to synchronize, and to receive the required mes-
sages.

We present the structure in Section 5.1 and introduce
an interpretation algorithm that defines the semantics
in Section 5.2.

5.1 Structure

The extension is represented by the following tuple

Ext := (Sync,MBox,C, INV,CC)

where Sync denotes the set of synchronization connec-
tors required for synchronous communication. Let Msg
be the set of messages used for asynchronous commu-
nication. Then MBox : Msg→ N determines for each
message how often it is available in its corresponding
mailbox. The real-time extension is covered by the set
C of clocks, the set Inv of invariants and the set CC of
clock-constraints.

As said before, the set of messages results from all
possible combinations of message parameters. We ab-
stracted from message parameters here, simply saying
that there exists a set of distinct messages. Further-
more, in the implementation of our extension there
exists the MailBox component for the realization of
asynchronous communication. Since the number of
messages included in a certain mailbox suffices to be
able to determine whether a transition that requires
such a message is able to fire, we abstracted from the

mailboxes here in form of the MBox function. The
following definition consists of elements that where
already defined in [9]. For the sake of completeness,
we describe and list them.

With the help of our extension Ext, we define an
extended StateGraph2 model (ESGM) Γ as follows:

Γ := (Vc,G,T,GI,GE ,Ext)

where

• Vc is a set of Boolean expression as defined in [9].
• G is a set of generalized steps G = {g1,g2, . . .}

A generalized step gi is defined as a 7-Tuple

gi = (Γs, I,O,S,R, Invgi ,RESETgi)

where
− Γs is a possibly empty set of sub-graphs Γs =
{γ1,γ2, . . .}. A sub-graph γi ∈ Γs is again an
ESGM. Note that this recursive definition allows
an arbitrary deep nesting of ESGMs.

− I is a vector of in (entry) ports I = [i1, i2, . . .]. An
in port is a connection point incoming transitions
of gi are connected to.

− O is a vector of out (exit) ports O = [o1,o2, . . .].
An out port is a connection point outgoing transi-
tions of gi are connected to.

− S is a possibly empty vector of suspend ports
S = [s1,s2, . . .]. A suspend port is a connection
point outgoing transitions of gi are connected to.
The difference to out ports is that the active gener-
alized steps of sub-graphs of gi are stored for later
restore.

− R is a possibly empty vector of resume ports R =
[r1,r2, . . .]. A resume port is a connection point
ingoing transitions of gi are connected to. The
difference to in ports is that the active generalized
steps of sub-graphs of gi that were active when gi

was left by a suspend port are restored.
− Invgi ⊆ Inv is a set of invariants. An invariant

describes that a clock must never exceed a certain
bound when the generalized step is active. It is
denoted as an inequation of the form c≤ n, where
c ∈ C is a clock and n ∈ N is a natural number
(including zero).

− RESETgi ∈C is a set of clocks that are to be reset
to zero when the generalized step is activated.

A generalized step that has in and out ports but no
other ports and no sub-graphs, i.e., I 6= /0, O 6= /0 and
R = S = Γs = /0 is called step. A generalized step
that has resume ports, suspend ports or sub-graphs,
i.e., R 6= /0, S 6= /0 or Γs 6= /0 holds, is called parallel
step.

• T is a set of transitions T = {t1, t2, . . .}. A transition



ti ∈ T is defined by the 10-tuple

ti = (pIR
ti , pOS

ti ,Cti ,Ati ,CCti ,Rti ,S
R
ti ,S

S
ti ,M

R
ti ,M

S
ti )

where
− pIR

ti is a connected port of an in or resume vector
of a succeeding generalized step gi ∈ G.

− pOS
ti is a connected port of an out or suspend vector

of a preceding generalized step gi ∈ G.
− Cti ∈Vc is the fire condition associated with ti.
− Ati ∈ R is the after time associated with ti. Note,

that we consciously chose the name after time
instead of delay time as in the original definition
in [9] since the semantics of the after time will be
different from the one of the delay time.

− CCti ∈ CC are the clock constraints associated
with ti.

− Rti ∈C are the clocks to be reset when ti fires.
− MR

ti ⊆Msg is the message that must be received
when ti fires.

− MS
ti ⊆Msg is the message that is sent when ti fires.

− SR
ti ⊆ Sync is the synchronization connector that

has to be set by another transition when ti fires.
− SS

ti ⊆ Sync is the synchronization connector that is
set if ti is firable.

We further define that a transition might have at most
one message that is to be received and at most one
message that is to be sent, i.e., |MR

ti | ≤ 1 and MS
ti ≤ 1

resp., and at most one synchronization connector
over which a signal is sent or received, i.e., |SR

ti |+
|SS

ti | ≤ 1.
• GI ⊆ G contains the initial generalized step of Γ.
• GE ⊆ G contains the exit generalized step of Γ.

As a well-formedness constraint, we assume that
every ESGM has exactly one initial state and at most
one exit state, i.e., |GI| = 1 and |GE | ≤ 1. Further-
more, we assume that the uppermost ESGM Γ =
(Vc,G,T,GI,GE ,Ext), i.e., that ESGM that is not em-
bedded by any other ESGM, does not have an exit
generalized step, i.e., GE = /0.

5.2 Interpretation Algorithm

1. Activate the initial generalized step g ∈ GI . If g
has sub-graphs, then recursively activate the initial
generalized steps of all of its embedded sub-graphs.

2. Determine the set Tf ireable of all transitions ti that
satisfy:
− its condition Cti is true,
− the required after time Ati has passed,
− its in or resume port pIR

ti is set to true,
− if its preceding generalized step has sub-graphs,

the exit generalized steps of all of these sub-

graphs are recursively activated
− if MR

ti 6= /0 and m ∈ MR
ti is the message to be re-

ceived by ti, the Mailbox of m contains at least
one message, i.e., MBox(m)> 0.

− there exists no other transition t j ∈ Tf ireable that
has the same preceding generalized basic step
and has higher priority than ti where the priority
results from the index of the transition in the port
vector (see [9]).

3. For all ti ∈ Tf ireable do:
i. if SS

ti 6= /0 and s ∈ SS
ti is the synchronization con-

nector of ti for sending a signal, set s to true
4. Determine the set Tsyncable of all transitions ti ∈

Tf irable that satisfy:
− either SR

ti = /0 or
− if SR

ti 6= /0 and s ∈ SR
ti is the synchronization con-

nector of ti, ti is set to true
5. For all ti ∈ Tsyncable fire ti as follows:

i. Deactivate the preceding generalized step g of
ti. If gi includes sub-graphs deactivate these sub-
graphs recursively.

ii. Activate the succeding generalized step g′ of ti. If
g′ includes sub-graphs activate these sub-graphs
recursively as follows:
− if ti is connected to g′ by a resume port, the

generalized steps of g′ and of all sub-graphs of
g′ that where active the last time g′ was active
are recursively activated

− else, activate all initial generalized steps of g′

and its sub-graphs recursively.
iii. if MR

ti 6= /0 and m ∈ MS
ti is the message to be re-

ceived by ti, then take one message out of the the
Mailbox of m, i.e., MBox := (MBox\{(m,d)})∪
{(m,d−1)} where d ∈ N is the amount of mes-
sages in the mailbox before ti fires.

iv. if MS
ti 6= /0 and m ∈MS

ti is the message to be sent
by ti, then put one message into the Mailbox of m,
i.e., MBox := (MBox \ {(m,d)})∪ {(m,d + 1)}
where d ∈ N is the amount of messages in the
mailbox before ti fires.

6. Goto 2.

6 Case Study

This section shows how we modeled the platoon sce-
nario. First, we used the StateGraph2 library in com-
bination with our Real-Time Coordination library to
specify the discrete software. Then, we connected the
software model with the simulation model of the BeBot
hardware that we have presented in Section 2.1. This
section shows an excerpt of our model. The complete



model is delivered within our Real-Time Coordination
library.

Figure 8 shows the discrete behavior specifica-
tion that we modeled as class BeBot_SW in Dy-
mola. We used the Step components and the Parallel
component from the StateGraph2 library. From the
Real-Time Coordination library, we used the Transi-
tion components, the Message components, the Mail-
box components, and the DelegationPort components.
We omit guards, connection lines between synchroniza-
tions, and timing constraints.
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Figure 8: Platoon Scenario Behavior Modeled

The interface of the class BeBot_SW defines three in-
coming parameters: the distance to a BeBot, that drives
in front, the cruisingSpeed of the BeBot, and bebotStop
that defines if the BeBot has to stop. The outgoing
parameter is the speed of the BeBot. Furthermore, five
asynchronous messages are defined that can be sent
and received: StartPlatoon to propose to start a platoon,
Confirm to confirm the start proposal, EndPlatoon to
command the end of the platoon, Stop to command
a rear-driving BeBot to stop, and Drive to inform a
rear-driving BeBot that it no longer has to stop.

Within BeBot_SW, two parallel branches were de-
fined. The first branch handles the platoon activation
and deactivation and consists of the steps NoPlatoon,
PlatoonProposed, and FrontPlatoon. The second branch
handles the coordinated braking within a platoon and
consists of the steps Regular (a BeBot has no limita-
tions regarding braking), Front (a BeBot has first to
inform the rear-driving BeBot before braking), and
Rear (a BeBot must brake when the front-driving Be-
Bot commands it). The synchronization between the
two branches is realized by using synchronous commu-
nication, e.g., if step FrontPlatoon is activated, then step
Front will also be activated at the same time. Among
others, this class contains a timing constraint that the
state PlatoonProposed is no longer active than 50ms.

Figure 9 shows the two connected instances front and

rear of the class BeBot_SW. Furthermore, it shows two
instances of the BeBot hardware model (see Figure 2)
and how they are connected with the software models.
The instance distance of the class Distance calculates the
distance of the rear BeBot to the front BeBot. We do
not display the connections to the inputs cruisingSpeed
and stop.
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Figure 9: Platoon Scenario Instance Model

Figures 10 and 11 show the results of a simulation
run of the model. Figure 10 shows the asynchronous
messages that were sent between the rear- and the front-
driving BeBot. Figure 11 shows the speed result of
both BeBots during a performed simulation. Right at
the start, the rear-driving BeBot speed was higher. As
the distance had reached a size where a platoon was
needed, the rear-driving BeBot sent the message Start-
Platoon. At time 8.6, the rear-driving BeBot received
the message Confirm(1) so it had adjusted its speed to
1. At time 25, the stop input of the rear-driving BeBot
raised to 1. Therefore, the rear-driving BeBot ended
the platoon by sending the message EndPlatoon and
stopped for 10s. Then the rear-driving BeBot started
again to close the gap by driving faster and to start a
new platoon.

front:BeBot_SWrear:BeBot_SW

Figure 10:
Sequence Diagram

Figure 11:
Simulation Plot

Figure 12 shows the 3D view of the simulation run.
The left shows the moment when the rear BeBot drives
faster than the front BeBot and the right shows when
both BeBots drive in the platoon with the same speed.



Figure 12: 3D View of Simulation

7 Related Work

This section presents some other approaches for model-
ing discrete state-based behavior for simulating hybrid
cyber-physical systems. We focus on the capabilities to
model and simulate real-time properties and constraints
of the behavior, synchronize parallel behavior, and to
communicate via asynchronous messages.

7.1 SimulationX

SimulationX supports an own representation of state
machines which follows the model of UML state ma-
chines but only implements a limited subset [3]. Sim-
ulationX state machines have no support for parallel
behavior and therefore no support of synchronizations.
The asynchronous signals have no support for an ar-
bitrary number of parameters and are lost when the
receiver is not enabled to consume them immediately.
They have no concept of a mailbox for storing messages.
SimulationX supports only limited timing support. Its
time events only react to an expression which is rela-
tive to the active state time of the transition which is
triggered by the after event. It is not possible to model
time invariants as first class entities. As SimulationX
supports Modelica, it is possible to port the concepts
that we present in this paper to SimulationX.

7.2 ModelicaML

ModelicaML is a UML Profile [13] which extends
UML Classes and Properties with Stereotypes for Mod-
elica. Therefore, it is possible to model with UML
Classes as in Modelica. Further, ModelicaML defines
a mapping of UML state machines and simple internal
events to plain Modelica algorithmic code [14]. For
more complex messages it is possible to use external
C-functions [11]. A code generation algorithm does
the mapping of UML state machines to Modelica code
automatically. In contrast to the State Graph2 exten-
sion presented in this paper it is hard to edit the state
machine behavior directly in Modelica because it is
encoded in a complex algorithm. Further, ModelicaML
has no support for synchronization of parallel behavior

from different regions as presented in Section 4.1. Mod-
elicaML supports only rudimentary timing behavior as
first class entity with its AFTER-macro [14]. This con-
struct is a transition guard relative to the active time of
a state. ModelicaML also does not support time invari-
ants of states. As ModelicaML supports Modelica, it
is possible to port the concepts that we present in this
paper to ModelicaML.

7.3 MATLAB/Simulink, Stateflow

MATLAB provides the custom modeling language
Stateflow for state based behavior. Stateflow has in-
terfaces to the Simulink environment. Stateflow has
some drawbacks for modeling communication proto-
cols with real-time requirements between distributed
systems. For clocks, helping elements from Simulink
to count time-ticks are needed. Stateflow also has no
concept of asynchronous, message-based communica-
tion with mailboxes for sent and received messages.
Stateflow events are not buffered by the receiver and
could be lost if the receiver is busy. It is possible to
encode asynchronous message-based communication.
Therefore, you need a complex combination of several
linked Simulink and Stateflow blocks, which is hard to
maintain manually [6, 10].

8 Conclusions and Future Work

Today, autonomous embedded systems are increasingly
connected to each other to realize new innovative func-
tionality, e.g., in the case of vehicle-to-vehicle commu-
nication to realize platooning.

We presented an extension of the StateGraph2 library
that enables modeling a real-time communication and
coordination between autonomous embedded systems
by providing library elements for asynchronous and
synchronous communication as well as real-time con-
straints. We modeled two miniature robots that drive in
a platoon with our library to simulate it.

We plan to make several additions to our library.
Asynchronous message exchange between autonomous
systems may suffer from message loss or message de-
lays. Therefore, we plan to enable modeling different
probabilistic quality of service characteristics, e.g., mes-
sage delays and message losses. The new Modelica ver-
sion 3.3 have built-in support of finite state machines,
which makes the StateGraph2 library obsolete. How-
ever, the new built-in finite state machines does not
support asynchronous message-based communication,
so we suggest to use our extensions for asynchronous



message-based communication. The integration is up
to further research.

With respect to tool chains, we want to implement
automatic transformations from MECHATRONICUML
to the presented extended StateGraph2 library. This
allows us to reap the benefits from formal verification
by model checking, which is possible for models of the
MECHATRONICUML [2], and integrated simulation
including feedback controllers and physics by using
Modelica. Finally, we will use our library in several
other case studies, including a de-centralized industrial
dough mixing system.
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